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1
ADAPTIVE NEURAL NETWORK SPEECH
RECOGNITION MODELS

BACKGROUND

Human-computer interactions have progressed to the point
where humans can control computing devices, and provide
input to those devices, by speaking Computing devices
employ techniques to identify the words spoken by a human
user based on the various qualities of a received audio input.
Such techniques are called speech recognition or automatic
speech recognition (ASR). Speech recognition combined
with language processing techniques may allow a user to
control a computing device to perform tasks based on the
user’s spoken commands. Speech recognition may also con-
vert a user’s speech into text data which may then be provided
to various textual based programs and applications.

Speech recognition may be used by computers, hand-held
devices, telephone computer systems, kiosks, and a wide
variety of other devices to improve human-computer interac-
tions.

BRIEF DESCRIPTION OF DRAWINGS

For a more complete understanding of the present disclo-
sure, reference is now made to the following description taken
in conjunction with the accompanying drawings.

FIG. 1 illustrates performing speech recognition with
adaptive neural networks according to one aspect of the
present disclosure.

FIG. 2 is ablock diagram conceptually illustrating a device
for speech recognition according to one aspect of the present
disclosure.

FIG. 3 illustrates an audio waveform processed according
to one aspect of the present disclosure.

FIG. 4 illustrates phoneme processing according to one
aspect of the present disclosure.

FIG. 5 illustrates phoneme processing in a Hidden Markov
Model according to one aspect of the present disclosure.

FIG. 6 illustrates phoneme processing and word process-
ing according to one aspect of the present disclosure.

FIG. 7 illustrates a speech recognition lattice according to
one aspect of the present disclosure.

FIG. 8 illustrates a neural network for speech recognition
according to one aspect of the present disclosure.

FIG. 9 illustrates a neural network for speech recognition
according to one aspect of the present disclosure.

FIG. 10 illustrates a computer network for use with distrib-
uted speech recognition according to one aspect of the present
disclosure.

FIG. 11 illustrates performing speech recognition with
adaptive neural networks according to one aspect of the
present disclosure.

DETAILED DESCRIPTION

In certain devices which perform automatic speech recog-
nition, neural networks may be used to determine what
sounds/words are spoken by a user. To improve performance
of'these neural networks, the neural networks may be updated
during runtime or substantially in real time. That is, the neural
network may be updated as part of speech recognition pro-
cessing rather than having to be taken offline and replaced
with an updated neural network. To retrain while the neural
network is online, the speech recognition output may be fed
into the neural network and used by the neural network to
retrain. Updating during runtime or substantially in real time
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2

may include performing the update using an utterance soon
after the speech recognition is performed on that utterance.
For example, after performing speech recognition, an ASR
device or module may immediately send the utterance and the
speech recognition output to a neural network model updater
to update the weights of the neural network model. Alterna-
tively, batching may be performed so that several utterances
and corresponding speech recognition outputs are sent to the
neural network model updater simultaneously. For example, a
certain number of utterances or all utterances received in a
given period of time may be processed together by the neural
network model updater.

The speech recognition output may include multi-path out-
puts such as lattices, weighted N-best list, and others as
explained below. This process may be formed with acoustic
model neural networks as well as language model neural
networks. An example of a device configured to use such
adaptive neural networks is shown in FIG. 1. A user 102
inputs audio including speech utterances to a device 104. The
device receives the utterance, as shown in block 106, per-
forms ASR on the utterance using a neural network, as shown
in block 108, and then retrains the neural network based on
the neural network output, as shown in block 110. Further
detail of this system is described below.

FIG. 2 shows an automatic speech recognition (ASR)
device 202 for performing speech recognition. Aspects of the
present disclosure include computer-readable and computer-
executable instructions that may reside on the ASR device
202. FIG. 2 illustrates a number of components that may be
included in the ASR device 202, however other non-illus-
trated components may also be included. Also, some of the
illustrated components may not be present in every device
capable of employing aspects of the present disclosure. Fur-
ther, some components that are illustrated in the ASR device
202 as a single component may also appear multiple times in
a single device. For example, the ASR device 202 may
include multiple input/output devices 206 or multiple con-
trollers/processors 208.

Multiple ASR devices may be employed in a single speech
recognition system. In such a multi-device system, the ASR
devices may include different components for performing
different aspects of the speech recognition process. The mul-
tiple devices may include overlapping components. The ASR
device as illustrated in FIG. 2 is exemplary, and may be a
stand-alone device or may be included, in whole or in part, as
a component of a larger device or system.

The teachings of the present disclosure may be applied
within a number of different devices and computer systems,
including, for example, general-purpose computing systems,
server-client computing systems, mainframe computing sys-
tems, telephone computing systems, laptop computers, cel-
Iular phones, personal digital assistants (PDAs), tablet com-
puters, other mobile devices, etc. The ASR device 202 may
also be a component of other devices or systems that may
provide speech recognition functionality such as automated
teller machines (ATMs), kiosks, home appliances (such as
refrigerators, ovens, etc.), vehicles (such as cars, busses,
motorcycles, etc.), and/or exercise equipment, for example.

As illustrated in FIG. 2, the ASR device 202 may include an
audio capture device 204 for capturing spoken utterances for
processing. The audio capture device 204 may include a
microphone or other suitable component for capturing sound.
The audio capture device 204 may be integrated into the ASR
device 202 or may be separate from the ASR device 202. The
ASR device 202 may also include an address/data bus 224 for
conveying data among components of the ASR device 202.
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Each component within the ASR device 202 may also be
directly connected to other components in addition to (or
instead of) being connected to other components across the
bus 224. Although certain components are illustrated in FIG.
2 as directly connected, these connections are illustrative only
and other components may be directly connected to each
other (such as the ASR module 214 to the controller/proces-
sor 208).

The ASR device 202 may include a controller/processor
208 that may be a central processing unit (CPU) for process-
ing data and computer-readable instructions and a memory
210 for storing data and instructions. The memory 210 may
include volatile random access memory (RAM), non-volatile
read only memory (ROM), and/or other types of memory. The
ASR device 202 may also include a data storage component
212, for storing data and instructions. The data storage com-
ponent 212 may include one or more storage types such as
magnetic storage, optical storage, solid-state storage, etc. The
ASR device 202 may also be connected to removable or
external memory and/or storage (such as a removable
memory card, memory key drive, networked storage, etc.)
through the input/output device 206. Computer instructions
for processing by the controller/processor 208 for operating
the ASR device 202 and its various components may be
executed by the controller/processor 208 and stored in the
memory 210, storage 212, external device, or in memory/
storage included in the ASR module 214 discussed below.
Alternatively, some or all of the executable instructions may
be embedded inhardware or firmware in addition to or instead
of software. The teachings of this disclosure may be imple-
mented in various combinations of software, firmware, and/or
hardware, for example.

The ASR device 202 includes input/output device(s) 206.
A variety of input/output device(s) may be included in the
device. Example input devices include an audio capture
device 204, such as a microphone (pictured as a separate
component), a touch input device, keyboard, mouse, stylus or
other input device. Example output devices include a visual
display, tactile display, audio speakers, headphones, printer
or other output device. The input/output device 206 may also
include an interface for an external peripheral device connec-
tion such as universal serial bus (USB), FireWire, Thunder-
bolt or other connection protocol. The input/output device
206 may also include a network connection such as an Eth-
ernet port, modem, etc. The input/output device 206 may also
include a wireless communication device, such as radio fre-
quency (RF), infrared, Bluetooth, wireless local area network
(WLAN) (such as WiF1i), or wireless network radio, such as a
radio capable of communication with a wireless communica-
tion network such as a Long Term Evolution (LTE) network,
WiMAX network, 3G network, etc. Through the input/output
device 206 the ASR device 202 may connect to a network,
such as the Internet or private network, which may include a
distributed computing environment.

The device may also include an ASR module 214 for pro-
cessing spoken audio data into text. The ASR module 214
transcribes audio data into text data representing the words of
the speech contained in the audio data. The text data may then
be used by other components for various purposes, such as
executing system commands, inputting data, etc. Audio data
including spoken utterances may be processed in real time or
may be saved and processed at a later time. A spoken utter-
ance in the audio data is input to the ASR module 214 which
then interprets the utterance based on the similarity between
the utterance and models known to the ASR module 214. For
example, the ASR module 214 may compare the input audio
data with models for sounds (e.g., speech units or phonemes)
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and sequences of sounds to identify words that match the
sequence of sounds spoken in the utterance of the audio data.
The different ways a spoken utterance may be interpreted
may each be assigned a probability or a recognition score
representing the likelihood that a particular set of words
matches those spoken in the utterance. The recognition score
may be based on a number of factors including, for example,
the similarity of the sound in the utterance to models for
language sounds (e.g., an acoustic model), and the likelihood
that a particular word which matches the sounds would be
included in the sentence at the specific location (e.g., using a
language or grammar model). Based on the considered fac-
tors and the assigned recognition score, the ASR module 214
may output the most likely words recognized in the audio
data. The ASR module 214 may also output multiple alterna-
tive recognized words in the form of a lattice or an N-best list
(described in more detail below).

While a recognition score may represent a probability that
aportion of audio data corresponds to a particular phoneme or
word, the recognition score may also incorporate other infor-
mation which indicates the ASR processing quality of the
scored audio data relative to the ASR processing of other
audio data. A recognition score may be represented as a
number on a scale from 1 to 100, as a probability from Oto 1,
a log probability or other indicator. A recognition score may
indicate a relative confidence that a section of audio data
corresponds to a particular phoneme, word, etc.

The ASR module 214 may be connected to the bus 224,
input/output device(s) 206, audio capture device 204,
encoder/decoder 222, controller/processor 208 and/or other
component of the ASR device 202. Audio data sent to the ASR
module 214 may come from the audio capture device 204 or
may be received by the input/output device 206, such as audio
data captured by a remote entity and sent to the ASR device
202 over a network. Audio data may be in the form of a
digitized representation of an audio waveform of spoken
utterances. The sampling rate, filtering, and other aspects of
the analog-to-digital conversion process may impact the over-
all quality of the audio data. Various settings of the audio
capture device 204 and input/output device 206 may be con-
figured to adjust the audio data based on traditional tradeoffs
of quality versus data size or other considerations. The ASR
module 214 may also be connected to a neural network
updater module 230. Alternatively, the neural network
updater module 230 may be included as part of the ASR
module 214. The neural network updater module 230 may
assist in ASR processing using neural networks as described
below, and/or may update neural networks as described
below.

The ASR module 214 includes an acoustic front end (AFE)
216, a speech recognition engine 218, and speech storage
220. The AFE 216 transforms audio data into data for pro-
cessing by the speech recognition engine 218. The speech
recognition engine 218 compares the speech recognition data
with the acoustic, language, and other data models and infor-
mation stored in the speech storage 220 for recognizing the
speech contained in the original audio data. The AFE 216 and
speech recognition engine 218 may include their own con-
troller(s)/processor(s) and memory or they may use the con-
troller/processor 208 and memory 210 ofthe ASR device 202,
for example. Similarly, the instructions for operating the AFE
216 and speech recognition engine 218 may be located within
the ASR module 214, within the memory 210 and/or storage
212 of the ASR device 202, or within an external device.

Received audio data may be sent to the AFE 216 for pro-
cessing. The AFE 216 may reduce noise in the audio data,
identify parts of the audio data containing speech for process-
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ing, and segment and process the identified speech compo-
nents. The AFE 216 may divide the digitized audio data into
frames, with each frame representing a time interval, for
example 10 milliseconds (ms). During that frame the AFE
216 determines a set of values, called a feature vector, repre-
senting the features/qualities of the utterance portion within
the frame. Feature vectors may contain a varying number of
values, for example forty. The feature vector may represent
different qualities of the audio data within the frame. FIG. 3
shows a digitized audio data waveform 302, with multiple
points 306 of the first word 304 as the first word 304 is being
processed. The audio qualities of those points may be stored
into feature vectors. Feature vectors may be streamed or
combined into a matrix that represents a time period of the
spoken utterance. These feature vector matrices may then be
passed to the speech recognition engine 218 for processing. A
number of approaches may be used by the AFE 216 to process
the audio data. Such approaches may include using mel-
frequency cepstral coefficients (MFCCs), perceptual linear
predictive (PLP) techniques, neural network feature vector
techniques, linear discriminant analysis, semi-tied covari-
ance matrices, or other approaches known to those of skill in
the art.

Processed feature vectors may be output from the ASR
module 214 and sent to the input/output device 206 for trans-
mission to another device for further processing. The feature
vectors may be encoded and/or compressed by the encoder/
decoder 222 prior to transmission. The encoder/decoder 222
may be customized for encoding and decoding ASR data,
such as digitized audio data, feature vectors, etc. The encoder/
decoder 222 may also encode non-ASR data of the ASR
device 202, for example using a general encoding scheme
such as .zip, etc. The functionality of the encoder/decoder 222
may be located in a separate component, as illustrated in FIG.
2, or may be executed by the controller/processor 208, ASR
module 214, or other component, for example.

The speech recognition engine 218 may process the output
from the AFE 216 with reference to information stored in the
speech storage 220. Alternatively, post front-end processed
data (such as feature vectors) may be received by the ASR
module 214 from another source besides the internal AFE
216. For example, another entity may process audio data into
feature vectors and transmit that information to the ASR
device 202 through the input/output device(s) 206. Feature
vectors may arrive at the ASR device 202 encoded, in which
case they may be decoded (for example by the encoder/
decoder 222) prior to processing by the speech recognition
engine 218.

The speech storage 220 includes a variety of information
for speech recognition such as data matching pronunciations
of'phonemes to particular words. This data may be referred to
as an acoustic model. The speech storage may also include a
dictionary of words or a lexicon. The speech storage may also
include data describing words that are likely to be used
together in particular contexts. This data may be referred to as
a language or grammar model. The speech storage 220 may
also include a training corpus that may include recorded
speech and/or corresponding transcription, that may be used
to train and improve the models used by the ASR module 214
in speech recognition. The training corpus may be used to
train the speech recognition models, including the acoustic
models and language models, in advance. The models may
then be used during ASR processing.

The training corpus may include a number of sample utter-
ances with associated feature vectors and associated correct
text that may be used to create, for example, acoustic models
and language models. The sample utterances may be used to

10

15

20

25

30

35

40

45

50

55

60

65

6

create mathematical models corresponding to expected audio
for particular speech units. Those speech units may include a
phoneme, syllable, part of a syllable, word, etc. The speech
unit may also include a phoneme in context such as a triphone,
quinphone, etc. Phonemes in context used regularly in speech
may be associated with their own models. Phonemes in con-
text that are less common may be clustered together to have a
group model. By clustering phoneme groups in this manner,
fewer models may be included in the training corpus, thus
easing ASR processing. The training corpus may include
multiple versions of the same utterance from different speak-
ers to provide different utterance comparisons for the ASR
module 214. The training corpus may also include correctly
recognized utterances as well as incorrectly recognized utter-
ances. These incorrectly recognized utterances may include
grammar errors, false recognition errors, noise, or other errors
that provide the ASR module 214 with examples of error
types and corresponding corrections, for example.

Other information may also be stored in the speech storage
220 for use in speech recognition. The contents of the speech
storage 220 may be prepared for general ASR use or may be
customized to include sounds and words that are likely to be
used in a particular application. For example, for ASR pro-
cessing at an ATM (automated teller machine), the speech
storage 220 may include customized data specific to banking
transactions. In certain instances the speech storage 220 may
be customized for an individual user based on his/her indi-
vidualized speech input. To improve performance, the ASR
module 214 may revise/update the contents of the speech
storage 220 based on feedback of the results of ASR process-
ing, thus enabling the ASR module 214 to improve speech
recognition beyond the capabilities provided in the training
corpus.

The speech recognition engine 218 attempts to match
received feature vectors to language phonemes and words as
known in the speech storage 220. The speech recognition
engine 218 computes recognition scores for the feature vec-
tors based on acoustic information and language information.
The acoustic information is used to calculate an acoustic
score representing a likelihood that the intended sound rep-
resented by a group of feature vectors match a language
phoneme. The language information is used to adjust the
acoustic score by considering what sounds and/or words are
used in context with each other, thereby improving the like-
lihood that the ASR module outputs speech results that make
sense grammatically.

The speech recognition engine 218 may use a number of
techniques to match feature vectors to phonemes. One com-
mon technique is using Hidden Markov Models (HMMs).
HMMs are used to determine probabilities that feature vec-
tors may match phonemes. Using HMMs, a number of states
are presented, in which the states together represent a poten-
tial phoneme (or other speech unit, such as a triphone) and
each state is associated with a model, such as a Gaussian
mixture model. Transitions between states may also have an
associated probability, representing a likelihood that a current
state may be reached from a previous state. Sounds received
may be represented as paths between states of the HMM and
multiple paths may represent multiple possible text matches
for the same sound. Each phoneme may be represented by
multiple potential states corresponding to different known
pronunciations of the phonemes and their parts (such as the
beginning, middle, and end of a spoken language sound). An
initial determination of a probability of a potential phoneme
may be associated with one state. As new feature vectors are
processed by the speech recognition engine 218, the state may
change or stay the same, based on the processing of the new
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feature vectors. A Viterbi algorithm may be used to find the
most likely sequence of states based on the processed feature
vectors.

In one example, the speech recognition engine 218 may
receive a series of feature vectors for sound corresponding to
auser saying “Hello, how are you today?”” The speech recog-
nition engine 218 may attempt to match each feature vector
with a phoneme in the speech recognition database 220. For
example, FIG. 4 shows a series of feature vectors 402 corre-
sponding to phoneme P, (representing the “e” sound in
“hello”), including ten feature vectors X, through X,. Upon
processing of the first feature vector, the speech recognition
engine 218 makes a preliminary determination as to the prob-
ability that the feature vector matches a phoneme, shown as
the score in FIG. 4. Based on the feature vector, the phoneme
/E/ may be assigned an initial score of 0.43, phoneme /e/ (a
different pronunciation from /E/) may be assigned a score of
0.24, etc. The score may be based on how closely the feature
vector matches a distribution associated with a phoneme state
within one or more acoustic models stored in the speech
storage 220. A feature vector may also be assigned a score that
the feature vector represents noise or silence. In the example
of FIG. 4, the score that the feature vector represents noise is
0.05.

Taking the example of the feature vector with a score of
0.43 for the phoneme /E/ shown in FIG. 4, the speech recog-
nition engine 218 initially assigns a score of 0.43 that the
feature vector matches the first state of the phoneme /F/,
shown as state S, in the Hidden Markov Model illustrated in
FIG. 5. After further processing, the speech recognition
engine 218 determines whether the state should either remain
the same, or change to a new state. For example, whether the
state should remain the same 504 may depend on the corre-
sponding transition probability (written as P(S,|S,), meaning
the probability of going from state S, to S;) and how well the
subsequent frame matches states S, and S, . If state S, is the
most probable, the calculations move to state S; and continue
from there. For subsequent frames, the speech recognition
engine 218 similarly determines whether the state should
remain at S|, using the transition probability represented by
P(S,1S,) 508, or move to the next state, using the transition
probability P(S,IS,) 510. As the processing continues, the
speech recognition engine 218 continues calculating such
probabilities including the probability 512 of remaining in
state S, or the probability of moving from a state of illustrated
phoneme /E/ to a state of another phoneme. After processing
the feature vectors for state S,, the speech recognition may
move to the next phoneme in the utterance.

The probabilities and states may be calculated using a
number of techniques. For example, probabilities for each
state may be calculated using a Gaussian model, Gaussian
mixture model, or other technique based on the feature vec-
tors and the contents of the speech storage 220. Techniques
such as maximum likelihood estimation (MLE) may be used
to build the acoustic model.

In addition to calculating potential states for one phoneme
as a potential match to a feature vector, the speech recognition
engine 218 may also calculate potential states for other pho-
nemes, such as phoneme /e/ and/or phoneme /a/ for the
example shown in FIG. 4 as potential matches for the feature
vector. In this manner multiple states and state transition
probabilities may be calculated.

The probable states and probable state transitions calcu-
lated by the speech recognition engine 218 are formed into
paths. Each path represents a progression of phonemes that
potentially match the audio data represented by the feature
vectors. One path may overlap with one or more other paths
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depending on the recognition scores calculated for each pho-
neme. Certain probabilities are associated with each transi-
tion from state to state. A cumulative path score may also be
calculated for each path. When combining scores as part of
the ASR processing, scores may be multiplied together (or
combined in other ways) to reach a desired combined score or
probabilities may be converted to the log domain and added to
assist processing.

The speech recognition engine 218 may also compute
scores of branches of the paths based on language models or
grammars. Language modeling involves determining scores
for what words are likely to be used together to form coherent
words and sentences. Application of a language model may
improve the likelihood that the ASR module 214 correctly
interprets the speech contained in the audio data. For
example, acoustic model processing returning the potential
phoneme paths of “HEL O”, “HA L O”,and “Y EL O” may
be adjusted by a language model to adjust the recognition
scores of “H E L O” (interpreted as the word “hello”), “HA L.
O” (interpreted as the word “halo”), and “Y E L. O” (inter-
preted as the word “yellow”) based on the language context of
each word within the spoken utterance. The language mod-
eling may be determined from a training corpus stored in the
speech storage 220 and may be customized for particular
applications. Language models may be performed using tech-
niques such as an N-gram model where a probability of seeing
a particular next word depends on the context history of the
preceding n—-1 words. N-gram models may also be structured
as bigram (where n=2) and trigram (where n=3) models
where the probability of seeing a next word depends on the
previous word (in the case of a bigram model) or on the
previous two words (in the case of a trigram model).

FIG. 6 illustrates the relationship between acoustic mod-
eling and language modeling. As illustrated, each processed
phoneme included in the path 602 is associated with an acous-
tic model score AM, through AM,,. The language model is
then applied to associate each word in the path 604 with a
language model score LM, or LM,.

As part of the language modeling (or in other phases of the
ASR processing) the speech recognition engine 218 may, to
save computational resources, prune and discard low recog-
nition score states or paths that have little likelihood of cor-
responding to the spoken utterance, either due to low recog-
nition score pursuant to the language model, or for other
reasons. Further, during the ASR processing the speech rec-
ognition engine 218 may iteratively perform additional pro-
cessing passes on previously processed utterance portions.
Later passes may incorporate results of earlier passes to refine
and improve results.

The speech recognition engine 218 may combine potential
paths into a lattice representing speech recognition results. A
sample lattice is shown in FIG. 7. The lattice 702 shows
multiple potential paths of speech recognition results. Paths
between large nodes represent potential words (for example
“hello”, “yellow™, etc.) and paths between smaller nodes
represent potential phonemes (for example “H”, “E”, “L.”,
“0” and “Y”, “E”, “L”, “0”). For purposes of illustration,
individual phonemes are only shown for the first two words of
the lattice. The two paths between node 704 and node 706
represent two potential word choices, “hello how” or “yellow
now”. Each path point between nodes (such as a potential
word) is associated with a recognition score. Each path across
the lattice may also be assigned a recognition score. The
highest recognition score path, where the recognition score is
a combination of the acoustic model score, the language
model score, and/or other factors, may be returned by the
speech recognition engine 218 as the ASR result for the
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associated feature vectors. The speech recognition engine
218 may also return a lattice or an N-best list of paths along
with their respective recognition scores, corresponding to the
top N paths as determined by the speech recognition engine
218.

Following ASR processing, the ASR results may be sent by
the ASR module 214 to another component of the ASR device
202, such as the controller/processor 208 for further process-
ing (such as execution of a command included in the inter-
preted text) or to the input/output device 206 for sending to an
external device.

Neural networks may also be used to perform ASR pro-
cessing including acoustic model processing and language
model processing. An example neural network for ASR is
illustrated in F1G. 8. A neural network may be structured with
an input layer 802, a middle layer 804, and an output layer
806. The middle layer may also be known as the hidden layer.
Each node of the hidden layer is connected to each node in the
input layer and each node in the output layer. Although illus-
trated in FIG. 8 with a single hidden layer, a neural network
may include multiple middle layers. In this case each node in
a hidden layer will connect to each node in the next higher
layer and next lower layer. Each node of the input layer
represents a potential input to the neural network and each
node of the output layer represents a potential output of the
neural network. Each connection from one node to another
node in the next layer may be associated with a weight or
score. A neural network may output a single output or a
weighted set of possible outputs.

In one aspect, the neural network may be constructed with
recurrent connections such that the output of the hidden layer
of the network feeds back into the hidden layer again for the
next set of inputs. Such a neural network is illustrated in FI1G.
9. Each node of the input layer 902 connects to each node of
the hidden layer 904. Each node of the hidden layer 904
connects to each node of the output layer 906. As illustrated,
the output of the hidden layer 904 is fed back into the hidden
layer for processing of the next set of inputs.

In the case where an acoustic model uses a neural network,
each node of the neural network input layer may represents an
acoustic feature of a feature vector of acoustic features, such
as those that may be output by AFE 216, and each node of the
output layer represents a score corresponding to a subword
unit (such as a phoneme, triphone, etc.) and/or associated
states that may correspond to the sound represented by the
feature vector. For a given input to the neural network, it
outputs a number of potential outputs each with an assigned
score representing a probability that the particular output is
the correct output given the particular input. The top scoring
output of an acoustic model neural network may then be fed
into an HMM which may determine transitions between
sounds prior to passing the results to a language model.

In the case where a language model uses a neural network,
each node of the neural network input layer may represent a
previous word and each node of the output layer may repre-
sent a potential next word as determined by the trained neural
network language model. As a language model may be con-
figured as a recurrent neural network which incorporates
some history of words processed by the neural network, such
as the network illustrated in FIG. 9, the prediction of the
potential next word may be based on previous words in an
utterance and not just on the most recent word. The language
model neural network may also output weighted predictions
for the next word.

Processing by a neural network is determined by the
learned weights on each node input and the structure of the
network. Given a particular input, the neural network deter-
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mines the output one layer at a time until the output layer of
the entire network is calculated.

Connection weights may be initially learned by the neural
network during training, where given inputs are associated
with known outputs. In a set of training data, a variety of
training examples are fed into the network. Each example
typically sets the weights of the correct connections from
input to output to 1 and gives all connections a weight of 0. As
examples in the training data are processed by the neural
network, an input may be sent to the network and compared
with the associated output to determine how the network
performance compares to the target performance. Using a
training technique, such as back propagation, the weights of
the neural network may be updated to reduce errors made by
the neural network when processing the training data. Train-
ing of a neural network typically only occurs ahead of time,
meaning a neural network is trained and then deployed to an
ASR system to perform whatever function is called for, such
as acoustic modeling, language modeling, etc.

One drawback to this traditional training approach is that a
neural network that is already in place in a system may not be
able to update its weights without being retrained or replaced
during a period of downtime. This may lead to neural network
inflexibility, as well as undesired results if speech recognition
conditions change prior to the neural network being updated.
Such changes in speech recognition may include a change in
environmental conditions effecting sound processing (which
may require adjustment of an acoustic model), new words
becoming more frequent in a spoken lexicon (and thus should
be chosen more often by a language model), or the like.

Offered is an approach to create an adaptive neural network
by training the neural network while it is online, meaning
while it is operating and performing speech recognition. A
neural network for speech recognition (such as an acoustic
model neural network or language model neural network)
may perform speech recognition operations and take the
results from the speech recognition operations and feedback
those results into the neural network as target outputs (also
target inputs for neural networks performing language mod-
eling) to adjust the internal weights of the neural network.
Following processing by neural network components,
another component of an ASR, such as a decoder may output
ASR results as a lattice, weighted N-best list, etc. Such ASR
outputs, and their corresponding scores, may be used to train
ASR neural networks. This training update may occur as
speech recognition processing is ongoing, such as in between
speech recognition passes, to update neural network weights
while the neural network is online. Thus, the speech recog-
nition output may be used to further train the neural
network(s) that performed the processing to adjust the exist-
ing weights of that neural network and improve recognition
for future audio. Other potential outputs may be used for
online training such as the highest scoring path through the
speech recognition output lattice (1-best), etc. The individual
outputs used to train the neural network(s) may be associated
with a confidence score representing a confidence the ASR
system has regarding the particular output. Confidence scores
may be incorporated into neural network training, such as less
heavily updating a neural network weight for ASR outputs
with lower confidence scores.

For example, a neural network language model may be
updated based on the lattice output from a speech recognition
system. Each words in the lattice may have an associated
score. The sequences of words along the different paths in the
lattice can be used as training data for the neural network
language model and allow the neural network weights to be
updated prior to its next processing pass. The training targets
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can be done in the typical way with only one word having a
weight larger than zero, or by allowing weights between 0 and
1 for the output targets by examining all possible next words
from the current point on the best-path through the lattice. In
this manner the neural network may be trained on multiple
potential paths at once, rather than trained on single “best”
target paths one at a time. The neural networks may also be
updated during runtime, that is while the neural networks are
implemented on a device and capable of performing ASR
processing. Being able to update the neural networks substan-
tially in real time allows the neural networks to more rapidly
adjust to changing communication conditions (such as those
that might affect an acoustic model, language model, etc.).
The neural network updater module 230 may update the
neural networks without having to retrain the neural networks
offline in a traditional fashion.

While using potentially incorrect ASR and/or neural net-
work outputs, as opposed to specially configured training data
sets, may result in a neural network being trained on data
segments that may not be correct, performing training using a
lattice, weighted N-best list, or other ASR and/or neural net-
work outputs which include weights other than 0 and 1 as
used in standard training allows for more nuanced adjust-
ments of existing neural network weights. Weights that are
not 0 and 1 may be referred to as fuzzy weights. The richer
sets of information and confidences allow several weighted
training examples to be used at the same time during each
re-training/update of the network weights. Further, updating a
neural network while online allows adjustment of a neural
network without having to take the network down for replace-
ment/updating as a result of new training data. In this manner
aneural network may be trained online based on a number of
potential or adaptive weights estimated by the recent history
of data processed during runtime rather than pre-set optimal
weights as specified in a proscribed set of training data.

While online training of neural networks may typically
take time to result in user noticeable changes to ASR process-
ing, in certain aspects such online training may be configured
in amanner which results in rapid training of neural networks.
For example, a neural network may be adapted for a short
term decay where neural network weights may be configured
to be an initial training value plus an offset which decays at a
configured rate. If such an offset is heavily weighted, very
recent processing conditions may heavily impact ASR pro-
cessing done by a neural network. For example, a user inputs
a first spoken utterance into a device while indoors in a
relatively quiet environment. The output of the speech recog-
nition system may be used to retrain the acoustic model neural
network based on processing of this first spoken utterance.
The user then steps outside to a noisy environment and inputs
a second spoken utterance into the device. The output of an
acoustic model neural network may be used to retrain the
acoustic model neural network based on processing of the
second spoken utterance. The acoustic model may now be
slightly adjusted for the different sounds that accompany the
noisy environment. While still outside, the user then inputs a
third spoken utterance into the device. The processing of this
third spoken utterance by the acoustic model neural network
may have slightly more accurate results due to the updating of
the acoustic model neural network after processing of the
second spoken utterance.

An example of how online training may apply for an lan-
guage model neural network is illustrated as follows. A lan-
guage model neural network may be trained on an initial set of
training data that is generalized across a wide user base and
then installed in multiple devices, such as in a smartphone,
tablet, etc. A particular user, however, may use certain words
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quite frequently that would otherwise be used infrequently by
the wide user base. By retraining a language model neural
network while online, the language model neural network
may adjust its internal weights to recognize that the words
favored by the particular user may be given a higher weight
than originally assigned during initial training. This will lead
to improved speech recognition performance for the particu-
lar user. This training may involve a short term decay, such as
that described above, to heavily weight recent updates, or
may retrain the language model neural network without the
decay.

A language model neural network may predict a next word
based on several weighted words from a lattice for the prior
N-best paths, similar to an N-gram described above. For an
acoustic model neural network, the target output for a frame
may include probabilities of each phone-state based on the
output lattice. Each output lattice may be used to retrain the
neural network for the next pass. Thus each pass through the
neural network may incorporate the retraining from previous
passes.

Neural networks may be retrained in this fashion based on
varying time scales. For example, a neural network may be
retrained in batches, such as retraining the neural network
after 10-20 passes through the network. In another example,
a neural network may be retrained after every acoustic frame
processed. In another example, a neural network may be
retrained after processing each word, each utterance, etc. The
time scale for retraining may be configured as desired.

In one aspect, neural network retraining may take place in
a distributed ASR system. For example, multiple ASR
devices 202 may be connected over a network. As shown in
FIG. 10 multiple devices may be connected over network
1002. Network 1002 may include a local or private network or
may include a wide network such as the internet. Devices may
be connected to the network 1002 through either wired or
wireless connections. For example, a wireless device 1004
may be connected to the network 1002 through a wireless
service provider. Other devices, such as computer 1012, may
connect to the network 1002 through a wired connection.
Other devices, such as laptop 1008 or tablet computer 1010
may be capable of connection to the network 1002 using
various connection methods including through a wireless ser-
vice provider, over a WiFi connection, or the like. Networked
devices may input spoken audio through a number of audio
input devices including through headsets 1006 or 1014.
Audio input devices may be connected to networked devices
either through a wired or wireless connection. Networked
devices may also include embedded audio input devices, such
as an internal microphone (not pictured) in laptop 1008, wire-
less device 1004 or table computer 1010.

In certain ASR system configurations, one device may
capture an audio signal and another device may perform the
ASR processing. For example, audio input to the headset
1014 may be captured by computer 1012 and sent over the
network 1002 to computer 1014 or server 1016 for process-
ing. Or computer 1012 may partially process the audio signal
before sending it over the network 1002. Because ASR pro-
cessing may involve significant computational resources, in
terms of both storage and processing power, such split con-
figurations may be employed where the device capturing the
audio has lower processing capabilities than a remote device
and higher quality ASR results are desired. In one aspect, the
audio capture may occur near a user and the captured audio
signal sent to another device for processing. In another aspect,
speech recognition results used to train a neural network may
bereceived by a remote device for training the neural network
of'alocal device. In another aspect, speech recognition results
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may be sent from a local device to a remote device and used
to train a neural network of the remote device or sent by the
remote device to other remote devices to train the neural
networks of those devices.

For example, in certain circumstances a word may become
more frequently used by a wide user base, as determined by a
remote device or other system which tracks word frequency
across multiple users/devices. The word may be the name of
a recently famous person, a new television program, etc.
Using information gathered from one or more user devices a
remote device may gather speech recognition results (such as
lattices, N-best lists, etc.) related to the specific word and send
those results to local devices for the local devices to use in
retraining ASR neural networks while online. In certain
aspects the remote device may determine which local devices
are likely to encounter the word, and send the data only to
those devices. In another aspect, certain local devices may
query a remote device for neural network updates that may be
applicable to the user of the local device. In this manner
multiple users may benefit from updates to neural networks
made to other users.

When training neural networks during run time, particular
biases of a neural network (such as a tendency to make a
certain kind of error during processing) may inadvertently be
reinforced instead of corrected. Such reinforcement may hap-
pen by virtue of the neural network’s potentially incorrect
outputs being used to retrain the neural network’s behavior.
To counter this effect, various internal weights of ASR results
may be adjusted. For example, when updating an acoustic
model, a system may add a higher weight to a language model
portion of ASR results. Similarly, when updating a language
model, a system may add a higher weight to an acoustic
model portion of ASR results.

In one aspect of the present disclosure, a device may per-
form ASR using adaptive neural networks as illustrated in
FIG. 11. An ASR device may receive audio including speech,
as shown in block 1102. The speech may include one or more
utterances. The ASR device may perform ASR processing on
an utterance using a neural network, as shown in block 1104.
The neural network may be an acoustic model neural network
or a language model neural network. The ASR device may
produce an output, such as a lattice, weighted N-best list, etc.
The output may then be used to update the neural network, as
shown in block 1106. The updated neural network may then
be used to perform ASR processing on a new utterance, as
shown in block 1108.

The above aspects of the present disclosure are meant to be
illustrative. They were chosen to explain the principles and
application of the disclosure and are not intended to be
exhaustive or to limit the disclosure. Many modifications and
variations of the disclosed aspects may be apparent to those of
skill in the art. For example, the ASR techniques described
herein may be applied to many different languages, based on
the language information stored in the speech storage.

Aspects of the present disclosure may be implemented as a
computer implemented method, a system, or as an article of
manufacture such as a memory device or non-transitory com-
puter readable storage medium. The computer readable stor-
age medium may be readable by a computer and may com-
prise instructions for causing a computer or other device to
perform processes described in the present disclosure. The
computer readable storage medium may be implemented by a
volatile computer memory, non-volatile computer memory,
hard drive, solid state memory, flash drive, removable disk,
and/or other media.

Aspects of the present disclosure may be performed in
different forms of software, firmware, and/or hardware. Fur-
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ther, the teachings of the disclosure may be performed by an
application specific integrated circuit (ASIC), field program-
mable gate array (FPGA), or other component, for example.

Aspects of the present disclosure may be performed on a
single device or may be performed on multiple devices. For
example, program modules including one or more compo-
nents described herein may be located in different devices and
may each perform one or more aspects of the present disclo-
sure. As used in this disclosure, the term “a” or “one” may
include one or more items unless specifically stated other-
wise. Further, the phrase “based on” is intended to mean
“based at least in part on” unless specifically stated otherwise.

What is claimed is:

1. A method of updating speech recognition neural net-
works, the method comprising:

receiving a first audio signal comprising a first speech
utterance;

performing speech recognition on the first audio signal
based at least in part on an acoustic model neural net-
work to obtain a lattice of speech recognition results,
wherein the lattice comprises a first path associated with
a first score a second path associate with a second score;

updating first weights of the acoustic model neural network
substantially in real time, wherein updating the first
weights comprises performing a first update using infor-
mation associated with the first path and performing a
second update using information associated with the
second path;

receiving a second audio signal comprising a second
speech utterance; and

performing speech recognition on the second audio signal
based at least in part on the acoustic model neural net-
work and the updated first weights.

2. The method of claim 1

wherein performing speech recognition on the first audio
signal is further based at least in part on a language
model neural network;

the method further comprising updating second weights of
the language model neural network substantially in real
time, wherein updating the second weights comprises
performing a third update using information associated
with the first path and performing a fourth update using
information associated with the second path; and

wherein performing speech recognition on the second
audio signal is further based at least in part on the lan-
guage model neural network and the updated weights of
the language model neural network.

3. The method of claim 1, further comprising:

computing a feature vector from the first audio signal;

determining a hidden Markov model state associated with
the feature vector from the first path of the lattice of
speech recognition results; and

wherein updating the first weights of the acoustic model
neural network comprises using the feature vector as an
input to the acoustic model neural network and the hid-
den Markov model state as an output to the acoustic
model neural network.

4. The method of claim 1, wherein updating the first
weights of the acoustic model neural network using informa-
tion associated with the first path comprises using a first
confidence score associated with the first path.

5. A computing device, comprising:

at least one processor;

a memory device including instructions operable to be
executed by the at least one processor to perform a set of
actions, configuring the at least one processor:
to receive an audio signal;
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to perform speech recognition processing on the audio
signal using a neural network to obtain speech recog-
nition results; and

to update the neural network during runtime based at
least in part on the speech recognition results.

6. The computing device of claim 5, wherein the neural
network comprises at least one of an acoustic model neural
network or a language model neural network.

7. The computing device of claim 5, wherein the processor
is further configured to, during the runtime:

determine a path of the neural network during the speech
recognition processing, the path having a weight;

perform the speech recognition processing on the audio
signal using the path to determine the speech recognition
results, the speech recognition results comprising a con-
fidence score;

update the neural network by adjusting the weight using the
confidence score to obtain an adjusted weight;

receive a second audio signal; and

perform second speech recognition processing on the sec-
ond audio signal using the adjusted weight.

8. The computing device of claim 7, wherein the speech
recognition results comprise a lattice, wherein the confidence
score is associated with a path of the lattice.

9. The computing device of claim 5, wherein the speech
recognition results comprises a lattice, the lattice having a
first path associated with a first score and a second path
associated with a second score and the first path and second
path representing different potential interpretations of the
audio data, and

wherein the at least one processor is configured to update

the neural network by updating a plurality of weights of
the neural network using the first score and second score.

10. The computing device of claim 5, wherein the at least
one processor is further configured:

to compute a feature vector from the audio signal;

to determine a hidden Markov model state associated with
the feature vector from the first result; and
wherein the at least one processor configured to update the
neural network comprises the at least one processor
configured to use the feature vector as an input to the
neural network and the hidden Markov model state as an
output to the neural network.
11. The computing device of claim 5, wherein the at least
one processor is further configured to send the speech recog-
nition results to a remote device.

12. The computing device of claim 5, wherein the at least
one processor is further configured to:

receive a plurality of additional audio signals;

perform speech recognition processing on the plurality of
audio signals using the neural network;

maintain a counter indicating a number of times the neural
network has been used; and

update the neural network when the counter passes a con-
figured value.

16

13. A non-transitory computer-readable storage medium
storing processor-executable instructions for controlling a
computing device, comprising:

program code to receive an audio signal;

5 program code to perform speech recognition processing on
the audio signal using a neural network to obtain speech
recognition results; and

program code to update the neural network during runtime

based at least in part on the speech recognition results.

14. The non-transitory computer-readable storage medium
of claim 13, wherein the neural network comprises at least
one of an acoustic model neural network or a language model
neural network.

15. The non-transitory computer-readable storage medium
of claim 13, further comprising program code to, during the
runtime:

determine a path of the neural network during the speech

recognition processing, the path having a weight;
perform the speech recognition processing on the audio

signal using the path to determine the speech recognition
results, the speech recognition results comprising a con-
fidence score;

update the neural network by adjusting the weight using the

confidence score to obtain an adjusted weight;

receive a second audio signal; and

perform second speech recognition processing on the sec-

ond audio signal using the adjusted weight.

16. The non-transitory computer-readable storage medium
of claim 15, wherein the speech recognition results comprise
a lattice, wherein the confidence score is associated with a
path of the lattice.

17. The non-transitory computer-readable storage medium
of'claim 13, wherein the speech recognition results comprises
a lattice, the lattice having a first path associated with a first
score and a second path associated with a second score and
the first path and second path representing different potential
interpretations of the audio data, and
wherein the at least one processor is configured to update the
neural network by updating a plurality of weights of the
neural network using the first score and second score.

18. The non-transitory computer-readable storage medium
40 of claim 13, further comprising:

program code to compute a feature vector from the audio

signal;

program code to determine a hidden Markov model state

associated with the feature vector from the first result;

and

wherein the program code to update the neural network

comprises program code to use the feature vector as an

input to the neural network and the hidden Markov
model state as an output to the neural network.

19. The non-transitory computer-readable storage medium
of claim 13, further comprising program code to send the
speech recognition results to a remote device.

20. The non-transitory computer-readable storage medium
of claim 13, further comprising:

program code to perform speech recognition processing on

the plurality of audio signals using the neural network;
program code to maintain a counter indicating a number of

times the neural network has been used; and

program code to update the neural network when the

counter passes a configured value.
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